Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis.
نویسندگان
چکیده
Allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA action at GABA(A) receptors. ALLO and THDOC are synthesized in the brain from progesterone or deoxycorticosterone, respectively, by the sequential action of two enzymes: 5alpha-reductase (5alpha-R) type I and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). This study evaluates 5alpha-R type I and 3alpha-HSD mRNA expression level in mouse brain by using in situ hybridization combined with glutamic acid decarboxylase 67/65, vesicular glutamate transporter 2, glial fibrillary acidic protein, and S100beta immunohistochemistry. We demonstrate that 5alpha-R type I and 3alpha-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus. Neither 5alpha-R type I nor 3alpha-HSD mRNAs are expressed in S100beta- or glial fibrillary acidic protein-positive glial cells. Using glutamic acid decarboxylase 67/65 antibodies to mark GABAergic neurons, we failed to detect 5alpha-R type I and 3alpha-HSD in cortical and hippocampal GABAergic interneurons. However, 5alpha-R type I and 3alpha-HSD are significantly expressed in principal GABAergic output neurons, such as striatal medium spiny, reticular thalamic nucleus, and cerebellar Purkinje neurons. A similar distribution and cellular location of neurosteroidogenic enzymes was observed in rat brain. Taken together, these data suggest that ALLO and THDOC, which can be synthesized in principal output neurons, modulate GABA action at GABA(A) receptors, either with an autocrine or a paracrine mechanism or by reaching GABA(A) receptor intracellular sites through lateral membrane diffusion.
منابع مشابه
Neurosteroid Biosynthesis in the Brain of Amphibians
Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The d...
متن کاملgamma-Aminobutyric acid, acting through gamma -aminobutyric acid type A receptors, inhibits the biosynthesis of neurosteroids in the frog hypothalamus.
Most of the actions of neurosteroids on the central nervous system are mediated through allosteric modulation of the gamma-aminobutyric acid type A (GABA(A)) receptor, but a direct effect of GABA on the regulation of neurosteroid biosynthesis has never been investigated. In the present report, we have attempted to determine whether 3beta-hydroxysteroid dehydrogenase (3beta-HSD)-containing neuro...
متن کاملThe Non-Benzodiazepine Anxiolytic Drug Etifoxine Causes a Rapid, Receptor-Independent Stimulation of Neurosteroid Biosynthesis
Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus investigated the effect and the mechanism o...
متن کاملDown-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice.
Allopregnanolone (ALLO), synthesized by pyramidal neurons, is a potent positive allosteric modulator of the action of GABA at GABA(A) receptors expressing specific neurosteroid binding sites. In the brain, ALLO is synthesized from progesterone by the sequential action of two enzymes: 5alpha-reductase type I (5alpha-RI) and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). In the cortex, hippoca...
متن کاملBrain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus.
An interaction with the GABA type A (GABA(A)) receptor has long been recognized as one of the main neurochemical mechanisms underlying many of the pharmacological actions of ethanol. However, more recent data have suggested that certain behavioral and electrophysiological actions of ethanol are mediated by an increase in brain concentration of neuroactive steroids that results from stimulation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 39 شماره
صفحات -
تاریخ انتشار 2006